|
Naimen Daisuke
|
Research field 【 display / non-display 】
-
Natural Science / Mathematical analysis
Keywords for Research Field 【 display / non-display 】
-
非線形解析
-
Nonlinear Analysis
Research themes 【 display / non-display 】
-
Existence of solutions of elliptic equations with nonlinear Neumann boundary conditions
Variational method,Critical point theory
-
On nonlinear partial differential equations involving the Dirichlet energy
Variational method,Critical point theory
Graduate school・Graduate course, etc. 【 display / non-display 】
-
Naruto University of Education
2012.03,Master's Course,Graduate School, Division of School Education,Education for Specialized Subject Matter and Field,Completed,Japan
-
Osaka City University
2014.10,Doctoral program,Graduate School, Division of Natural Science,Mathematics and Physics,Completed,Japan
Graduate school・major, etc. 【 display / non-display 】
-
Tokyo University of Science
2009.03,Faculty of Science, Division 1,Department of Physics,Graduate,Japan
Career 【 display / non-display 】
-
Tokyo Institute of Technology (Postdoctoral Resercher)
2014.10.01 ~ 2015.01.16
-
Tokyo Institute of Technology (Postdoctoral Resercher)
2015.04.01 ~ 2016.03.31
Papers 【 display / non-display 】
-
Bubbling nodal solutions for a large perturbation of the Moser-Trudinger equation on planar domains
Massimo Grossi, Gabriele Mancini, Daisuke Naimen, Angela Pistoia,Mathematische Annalen,2021.06
-
Concentration profile, energy, and weak limits of radial solutions to semilinear elliptic equations with Trudinger-Moser critical nonlinearities.
Daisuke Naimen,Calculus of Variations and Partial Differential Equations,2021.04
-
Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in R2
Massimo Grossi, Daisuke Naimen,ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE,vol.20,(p.797 ~ 825),2020.05
-
Existence and multiplicity of positive solutions of a critical Kirchhoff type elliptic problem in dimension four
Masataka Shibata, Daisuke Naimen,Differential and Integral Equations,vol.33,(p.223 ~ 246),2020.05
-
Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension
Daisuke Naimenand Masataka Shibata,Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal,vol.186,(p.187 ~ 208),2019.09
International conference proceedings 【 display / non-display 】
-
A note on radial solutions to the critical Lane-Emden equation with a variable coefficient.
Daisuke Naimen, Futoshi Takahashi,Geometric properties for parabolic and elliptic PDEs,2021
-
Blow-up analysis for nodal radial solutions in Trudinger-Moser critical equations in R^2
Daisuke Naimen,Proceedings of 44th Sapporo Symposium on Partial Differential Equations,2019.07
Presentaion at conference, meeting, etc. 【 display / non-display 】
-
Concentration analysis of semilinear elliptic equations with exponential growth in a disc
Daisuke Naimen,Non-compactness phenomena on critical problems and related topics,abstract,2023.11.18,Japan
-
Concentration phenomena on radial solutions to semilinear elliptic equations with the Trudinger-Moser growth
Daisuke Naimen,The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications,The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications ABSTRACTS,(p.38),2023.05.31,United States
-
Concentration phenomena on radial solutions to semilinear elliptic equations with the Trudinger-Moser growth
Daisuke Naimen,The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications,American Institute of Mathematical Society,The 13th AIMS Conference on Dynamical Systems, Differential Equations and Applications ABSTRACTS,(p.90),2023.05.31,United States
-
指数型臨界非線形項を持つ楕円型方程式の球対称解の集中挙動について
内免大輔,非線型偏微分方程式と走化性,なし,2022.11.29,北九州国際会議場,Japan
-
Trudinger-Moser 型臨界非線形楕円型方程式の球対称解の集中挙動について
内免大輔,オンライン放物型偏微分方程式ワークショップ,なし,2021.08.27,Japan
Class subject in charge 【 display / non-display 】
-
微分積分C(Dクラス)
2024,Department
-
微分積分C(Gクラス)
2024,Department
-
微分積分C(Fクラス)
2024,Department
-
微分積分A
2024,Department
-
情報学特別講義F(後半8週)
2024,Department