International conference proceedings - Satoshi Kondo

Division display  1 - 20 of about 39 /  All the affair displays >>
  1. A Shape-Based Similarity Calculation Method for Cost Estimation of Large Forged Steel Products

    Shunga Matsuo, Satoshi Kondo, Yusuke Imamura, Kenji Takase, Shinya Watanab,2024 Joint 13th International Conference on Soft Computing and Intelligent Systems and 25th International Symposium on Advanced Intelligent Systems (SCIS&ISIS),2024.11

  2. Filtrate Estimation from Filter Press Process in a Water Treatment Facility based on Image Analysis

    Poltak Sandro Rumahorbo, Stefan Baar, Satoshi Kondo, Nobuhiro Yazawa, Hiroki Ito, Jun Sugimoto, Yoshifumi Okada, Kazuhiko Sato, Shinya Watanabe,2024 Joint 13th International Conference on Soft Computing and Intelligent Systems and 25th International Symposium on Advanced Intelligent Systems (SCIS&ISIS),2024.11

  3. Lung Disease Classification With Limited Training Data Based on Weight Selection Technique

    Ayaka Tsutsumi, Guang Li, Ren Togo, Takahiro Ogawa, Satoshi Kondo, Miki Haseyama,2024 IEEE 13th Global Conference on Consumer Electronics (GCCE 2024),2024.10

  4. Context-Aware Action Recognition: Introducing a Comprehensive Dataset for Behavior Contrast

    T. Sasaki, Y. Ito, S. Kondo,European Conference on Computer Vision,2024.10

  5. Evaluation of subtraction processing for mammograms analyzed by breast density and thickness

    Chiharu Kai, Satoshi Kondo, Tsunehiro Otsuka, Hitoshi Futamura, Satoshi Kasai,Proc. SPIE 13174, 17th International Workshop on Breast Imaging (IWBI 2024),2024.05

  6. Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation

    S. Kondo,Domain Adaptation and Representation Transfer. DART 2023. Lecture Notes in Computer Science,vol.14293,(p.22 ~ 30),2023.10

  7. Why is the winner the best ?

    M. Eisenmann, A. Reinke, V. Weru, M. D. Tizabi, F. Isensee, T. J. Adler, S. Ali, V. Andrearczyk, M. Aubreville, U. Baid, S. Bakas, N. Balu, S. Bano, J. Bernal, S. Bodenstedt, A. Casella, V. Cheplygina, M. Daum, M. de Bruijne, A. Depeursinge, R. Dorent, J. Egger, D. G. Ellis, S. Engelhardt, M. Ganz, N. Ghatwary, G. Girard, P. Godau, A. Gupta, L. Hansen, K. Harada, M. P. Heinrich, N. Heller, A. Hering, A. Huaulmé, P. Jannin, A. E. Kavur, O. Kodym, M. Kozubek, J. Li, H. Li, J. Ma, C. Martín-Isla, B. Menze, A. Noble, V. Oreiller, N. Padoy, S. Pati, K. Payette, T. Rädsch, J. Rafael-Patiño, V. S. Bawa, S. Speidel, C. H. Sudre, K. van Wijnen, M. Wagner, D. Wei, A. Yamlahi, M. H. Yap, C. Yuan, M. Zenk, A. Zia, D. Zimmerer, D. B. Aydogan, B. Bhattarai, L. Bloch, R. Brüngel, J. Cho, C. Choi, Q. Dou, I. Ezhov, C. M. Friedrich, C. D. Fuller, R. R. Gaire, A. Galdran, Á. G. Faura, M. Grammatikopoulou, S. Hong, M. Jahanifar, I. Jang, A. Kadkhodamohammadi, I. Kang, F. Kofler, S. Kondo, H. Kuijf, M. Li, M. Luu, T. Martinčič, P. Morais, M. A. Naser, B. Oliveira, D. Owen, S. Pang, J. Park, S. Park, S. Plotka, E. Puybareau, N. Rajpoot, K. Ryu, N. Saeed, A. Shephard, P. Shi, D. Štepec, R. Subedi, G. Tochon, H. R. Torres, H. Urien, J. L. Vilaça, K. A. Wahid, H. Wang, J. Wang, L. Wang, X. Wang, B. Wiestler, M. Wodzinski, F. Xia, J. Xie, Z. Xiong, S. Yang, Y. Yang, Z. Zhao, K. Maier-Hein, P. F. Jäger, A. Kopp-Schneider, L. Maier-Hein,Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,(p.19955 ~ 19966),2023.06,Vancouver, Canada

  8. Tackling Mitosis Domain Generalization in Histopathology Images with Color Normalization

    S. Kondo, S. Kasai, K. Hirasawa,Mitosis Domain Generalization and Diabetic Retinopathy Analysis. MIDOG 2022, DRAC 2022,vol.13597,(p.217 ~ 220),Springer Nature Switzerland,2023.05

  9. Multi-source Domain Adaptation Using Gradient Reversal Layer for Mitotic Cell Detection

    S. Kondo,Proceedings of Biomedical Image Registration, Domain Generalisation and Out-of-Distribution Analysis,2022.03

  10. Pose Estimation of 2D Ultrasound Probe from Ultrasound Image Sequences Using CNN and RNN

    K. Miura, K. Ito, T. Aoki, J. Ohmiya, S. Kondo,,International Workshop on Advances in Simplifying Medical UltraSound,(p.96 ~ 105),2021.09

  11. Probe Localization from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction

    K. Miura, K. Ito, T. Aoki, J. Ohmiya, S. Kondo,,International Forum on Medical Imaging in Asia,2021.01

  12. Localizing 2D Ultrasound Probe from Ultrasound Image Sequences Using Deep Learning for Volume Reconstruction

    K. Miura, K. Ito, T. Aoki, J. Ohmiya, S. Kondo,International Workshop on Advances in Simplifying Medical Ultrasound,(p.07 ~ 105),2020.10

  13. PROBE LOCALIZATION USING STRUCTURE FROM MOTION FOR 3D ULTRASOUND IMAGE RECONSTRUCTION

    Ito Shuya, Ito Koichi, Aoki Takafumi, Ohmiya Jun, Kondo Satoshi,2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017),(p.68 ~ 71),2017

  14. Freehand 3D Ultrasound Volume Reconstruction Using an Accurate Probe Localization Method

    S. Ito, K. Ito, T. Aoki, J. Ohmiya, S. Kondo,International Forum on Medical Imaging in Asia,(p.48 ~ 51),2017

  15. A Probe-Camera System for 3D Ultrasound Image Reconstruction

    Ito Koichi, Yodokawa Kouya, Aoki Takafumi, Ohmiya Jun, Kondo Satoshi,IMAGING FOR PATIENT-CUSTOMIZED SIMULATIONS AND SYSTEMS FOR POINT-OF-CARE ULTRASOUND,vol.10549,(p.129 ~ 137),2017

  16. 3D Reconstruction of Human Body Using Structure from Motion for 3D Medical Imaging

    S. Ito, K. Ito, T. Aoki, J. Ohmiya, S. Kondo,38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),2016

  17. Liver Ultrasound Tracking Using Kernelized Correlation Filter With Adaptive Window Size Selection,

    S. Kondo,The MICCAI 2015 workshop, Challenge on Liver Ultrasound Tracking (CLUST 2015),(p.5 ~ 12),2015

  18. Liver Ultrasound Tracking Using Long-term and Short-term Template Matching

    S. Kondo,The MICCAI 2014 workshop, Challenge on Liver Ultrasound Tracking (CLUST 2014),(p.5 ~ 12),2014

  19. Semi-Automatic Detection of Coronary Artery Calcium with an Artery Identification Technique

    S. Kondo,MICCAI Challenge on Automatic Coronary Calcium Scoring (orCaScore),(p.9 ~ 13),2014

  20. Fully Automatic Detection of the Carotid Artery from Volumetric Ultrasound Images Using Anatomical Position-Dependent LBP Features

    Kawai Fumi, Hayata Keisuke, Ohmiya Jun, Kondo Satoshi, Ishikawa Kiyoko, Yamamoto Masahiro,MACHINE LEARNING IN MEDICAL IMAGING (MLMI 2013),vol.8184,(p.41 ~ 48),2013

To the head of this page.▲