Papers - Hasegawa Koji
-
Computing group velocities and group-velocity dispersions of optical fibers through automatic differentiation of explicit forms of propagation constants
Yasuo Tsushima, Koji Hasegawa,Journal of Lightwave Technology,2020.08
-
Hybrid Trefftz Finite-Element Method for Analyzing the Eigenmodes of Optical Fibers
Shingo Sato, Koji Hasegawa, Naoya Mizukami, and Yasuo Tsushima,Journal of Lightwave Technology,vol.37,(3),(p.1029 ~ 1036),2019.02
-
Finding Propagation Constants of Leaky and Degenerate Modes Using Simultaneous Transcendental Equations of Holey Optical Fibers
Sato Shingo, Hasegawa Koji, Tsushima Yasuo,JOURNAL OF LIGHTWAVE TECHNOLOGY,vol.35,(14),(p.2871 ~ 2879),2017.07
-
Resonant frequency analysis of a Lame-mode resonator on a quartz plate by the finite-difference time-domain method using the staggered grid with the collocated grid points of velocities
Yasui Takashi, Hasegawa Koji, Hirayama Koichi,JAPANESE JOURNAL OF APPLIED PHYSICS,vol.55,(7),Article Number:07KC02,2016.07
-
Extraction of all propagation constants in a specified region from the transcendental equation of a dispersion relation using the Sakurai–Sugiura projection method
Shingo Sato, Takao Shimada, and Koji Hasegawa,Journal of the Optical Society of America A,vol.32,(7),(p.1216 ~ 1221),2015.06
-
Efficient finite-difference time-domain computation of resonant frequencies of rectangular Lamé mode resonators via a combination of the symmetry boundary conditions and the Padé approximation
Takashi Yasui, Koji Hasegawa, and Koichi Hirayama,Japanese Journal of Applied Physics,vol.54,(7),(p.07HD01-1 07HD04-6 ~ ),2015.06
-
A HYBRID TREFFTZ FINITE ELEMENT ANALYSIS OF SYMMETRIC OR ANTISYMMETRIC EIGENMODES PROPAGATING IN AN ELECTROMAGNETIC WAVEGUIDE
森田,佐藤,長谷川,嶋田,日本計算数理工学会論文集,vol.14,(p.49 ~ 54),2014.12
-
HYBRID TREFFTZ FINITE ELEMENT ANALYSIS OF DEGENERATE MODES PROPAGATING IN AN ELECTROMAGNETIC WAVEGUIDE
森田,佐藤,長谷川,嶋田,日本計算数理工学会,vol.13,2013.12
-
Implementation of Free Surface Condition for Finite-Difference Time-Domain Method with a Staggered Grid with the Collocated Grid Points of Velocities
T. Yasui, K.Hasegawa and K.Hirayama,Japanese Journal of Applied Physics,vol.52,(p.07HD07 ~ ),2013.07
-
Perfectly Matched Layers for Elastic Waves in Piezoelectric Solids
K. Hasegawa and S. Sato,Japanese Journal of Applied Physics,vol.52,(p.07HB01 ~ ),2013.07
-
電磁波導波路非線形固有値問題の解の判別法(線形化問題の固有値あるいは固有値の感度を用いる方法)
佐藤慎悟,森田好人、長谷川弘治、嶋田賢男,計算数理工学論文集,vol.12,(1),2012.12
-
A staggered grid with collocated grid points of velocities for modeling propagation of elastic waves in anisotropic solids with the finite-difference time domain method
K.Hasegawa and T.Shimada,Japanese Journal of Applied Physics,vol.51,(7),(p.07GB04 ~ ),2012.07
-
電磁波導波路固有値問題のSakurai-Sugiura射影法を用いたハイブリッドトレフツ有限要素解法への混入解
嶋田賢男,森田好人,長谷川弘治,佐藤慎悟,Transactions of the Japan society for Computational Methods in Engineering,vol.11,(1),(p.01 ~ 111216),2011.12
-
二重周期構造による平面波散乱特性の三次元ハイブリッドトレフツ有限要素解析法
佐藤慎悟 長谷川弘治 平山浩一,IEICE transactions on electronics,vol.J94-C,(10),(p.277 ~ 287),2011.10
-
An analysis of reflection powers from a perfectly matched layer for elastic waves in the frequency domain finite element model
T.Shimada, K.Hasegawa and S.Sato,Japanese Journal of applied physics,vol.50,(7),(p.07HC13 ~ ),2011.07
-
開放型電磁波導波路固有値問題のSakurai-Sugiura射影法を用いたハイブリッド・トレフツ有限要素解析法
森田好人,嶋田賢男,長谷川弘治,佐藤慎悟,Transactions of the Japan society for Computational Methods in Engineering,vol.10,(1),(p.16 ~ 101210),2010.12
-
Perfectly matched layers in the cylindrical and spherical coordinates for elastic waves in solids
T.Shimada and K.Hasegawa,Japanese Journal of applied physics,vol.49,(No.7 issue 2),(p.07HB08(3) ~ ),2010.07
-
Perfectly Matched Layers for Elastic Waves
嶋田賢男,長谷川弘治,IEICE transactions on electronics,vol.J93-C,(7),(p.215 ~ 223),2010.07
-
有限要素法における完全整合層の平面電磁波吸収特性
嶋田賢男,長谷川弘治,佐藤慎悟,Transactions of the Japan society for Computational Methods in Engineering,vol.9,(1),(p.19 ~ 24),2009.12
-
Finite element analysis of plane wave scattering of multilayered periodic structures
佐藤慎悟 長谷川弘治,Transactions of the Japan society for Computational Methods in Engineering,vol.7,(2),(p.219 ~ 224),2008.12