Personnel Information

写真a

Naimen Daisuke


Affiliation centers1, etc

The Center for Fundamental Education in Science and Engineering

Job title

Associate Professor

E-mail Address

E-mail address

Research field 【 display / non-display

  • Mathematical analysis

Keywords for Research Field 【 display / non-display

  • 非線形解析

  • Nonlinear Analysis

Research themes 【 display / non-display

  • Existence of solutions of elliptic equations with nonlinear Neumann boundary conditions

    Variational method,Critical point theory

  • On nonlinear partial differential equations involving the Dirichlet energy

    Variational method,Critical point theory

Graduate school・Graduate course, etc. 【 display / non-display

  • Naruto University of Education

    2012.03,Master's Course,Graduate School, Division of School Education,Education for Specialized Subject Matter and Field,Completed,Japan

  • Osaka City University

    2014.10,Doctoral program,Graduate School, Division of Natural Science,Mathematics and Physics,Completed,Japan

Graduate school・major, etc. 【 display / non-display

  • Tokyo University of Science

    2009.03,Faculty of Science, Division 1,Department of Physics,Graduate,Japan

Degree 【 display / non-display

  • Master of Education

  • Doctor of Science

Career 【 display / non-display

  • Tokyo Institute of Technology (Postdoctoral Resercher)

    2014.10.01 ~ 2015.01.16

  • Tokyo Institute of Technology (Postdoctoral Resercher)

    2015.04.01 ~ 2016.03.31

Academic Society 【 display / non-display

  • Mathematical Society of Japan

 
 

Papers 【 display / non-display

  • Two positive solutions for the Kirchhoff type elliptic problem with critical nonlinearity in high dimension

    Daisuke Naimenand Masataka Shibata,Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal,vol.186,(p.187 ~ 208),2019.09

  • Multiple solutions of a Kirchhoff type elliptic problem with the Trudinger-Moser growth

    D.Naimen, C. Tarsi,Advances in Differential Equations,vol.22,(11-12),(p.983 ~ 1012),2017.11

  • A note on a nonlinear elliptic problem with a nonlocal coefficient

    Daisuke Naimen,Journal of Mathematical Analysis and Applications,vol.435,(2),(p.1710 ~ 1737),2016.03

  • On the Brezis-Nirenberg problem with a Kirchhoff type perturbation

    Daisuke Naimen,Advanced Nonlinear Studies,vol.15,(1),(p.885 ~ 914),2015.02

International conference proceedings 【 display / non-display

  • Blow-up analysis for nodal radial solutions in Trudinger-Moser critical equations in R^2

    Daisuke Naimen,Proceedings of 44th Sapporo Symposium on Partial Differential Equations,2019.07

Presentaion at conference, meeting, etc. 【 display / non-display

  • Blow-up analysis for nodal radial solutions in Trudinger-Moser critical equations in R^2

    Daisuke Naimen,第44回偏微分方程式論札幌シンポジウム,Proceedings of 44th Sapporo Symposium on Partial Differential Equations,2019.08.05,日本

  • Blow-up analysis for nodal radial solutions in Trudinger-Moser critical equations in R^2

    Daisuke Naimen,6th GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE's,ABSTRACTS:http://web.math.unifi.it/users/salani/IJ2019-GPPEPDEs/Raccolta_abstract.pdf,2019.05.20,イタリア

  • Existence and multiplicity of positive solutions of a critical Kirchhoff type elliptic problem in dimension four

    Daisuke Naimen,AMS Spring Central and Western Joint Sectional Meeting,http://www.ams.org/meetings/sectional/2251_program_ss44.html#title,2019.03.22,アメリカ

  • Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in R^2

    Daisuke Naimen,http://www.math.sci.ehime-u.ac.jp/~ynaito/conf/programOkayama2018.pdf,2018.12.13,日本

  • Blow-up analysis for nodal radial solutions in Moser-Trudinger critical equations in R^2

    Daisuke Naimen,AIMS 2018 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications Abstracts,2018.07.05,台湾

display all >>

 

Class subject in charge 【 display / non-display

  • 形の数理

    2019,Department

  • 微分積分A(Dクラス)

    2019,Department

  • 微分積分B(Fクラス)

    2019,Department

  • 微分積分B(Dクラス)

    2019,Department

  • 解析C

    2019,Department

display all >>